An All-Batch Loss for Constructing Prediction Intervals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Optimal Prediction Intervals for Future Order Statistics

Prediction, by interval or point, of an unobserved random variable is a fundamental problem in statistics. This paper deals with constructing a prediction interval on a future observation Xr in an ordered sample of size n from an underlying distribution (under parametric uncertainty), where the first k observations X1 < X2 <  < Xk, 1k<rn, have been observed. Prediction intervals for future...

متن کامل

Prediction Intervals for Performance Prediction

The Predictive Performance Equation (PPE) is a mathematical model of learning and forgetting developed to capture performance effectiveness across training histories, and to generate precise, quantitative point predictions of performance by extrapolating the unique mathematical regularities indicative of the learner. This equation is implemented in the Predictive Performance Optimizer (PPO) cog...

متن کامل

Constructing confidence intervals for QTL location.

We describe a method for constructing the confidence interval of the QTL location parameter. This method is developed in the local asymptotic framework, leading to a linear model at each position of the putative QTL. The idea is to construct a likelihood ratio test, using statistics whose asymptotic distribution does not depend on the nuisance parameters and in particular on the effect of the Q...

متن کامل

Intervals is All We Need : An

| In many practical applications of fuzzy methodology, it is desirable to go beyond the interval 0; 1] and to consider more general fuzzy values: e.g., intervals, or more general sets of values. In this paper, we show that under some reasonable assumptions , there is no need to go beyond intervals.

متن کامل

A Sieve Bootstrap approach to constructing Prediction Intervals for Long Memory Time series

This paper is concerned with the construction of bootstrap prediction intervals for autoregressive fractionally integrated movingaverage processes which is a special class of long memory time series. For linear short-range dependent time series, the bootstrap based prediction interval is a good nonparametric alternative to those constructed under parameter assumptions. In the long memory case, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Sciences

سال: 2021

ISSN: 2076-3417

DOI: 10.3390/app11041728